
www.manaraa.com

Softw Syst Model (2018) 17:1287–1309
https://doi.org/10.1007/s10270-016-0557-6

REGULAR PAPER

An approach to clone detection in sequence diagrams
and its application to security analysis

Manar H. Alalfi1 · Elizabeth P. Antony1 · James R. Cordy1

Received: 6 August 2015 / Revised: 17 August 2016 / Accepted: 25 August 2016 / Published online: 12 September 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Duplication in software systems is an important
issue in software quality assurance. While many methods for
software clone detection in source code and structuralmodels
have been described in the literature, little has been done on
similarity in the dynamic behaviour of interactive systems.
In this paper, we present an approach to identifying near-
miss interaction clones in reverse-engineeredUML sequence
diagrams.Our goal is to identify patterns of interaction (“con-
versations”) that can be used to characterize and abstract the
run-time behaviour of web applications and other interactive
systems. In order to leverage existing robust near-miss code
clone technology, our approach is text-based, working on
the level of XMI, the standard interchange serialization for
UML. Clone detection in UML behavioural models, such
as sequence diagrams, presents a number of challenges—
first, it is not clear how to break a continuous stream of
interaction between lifelines (representing the objects or
actors in the system) into meaningful conversational units.
Second, unlike programming languages, the XMI text rep-
resentation for UML is highly non-local, using attributes
to reference-related elements in the model file remotely. In
this work, we use a set of contextualizing source transfor-
mations on the XMI text representation to localize related
elements, exposing the hidden hierarchical structure of the

Communicated by Mrs. Esther Guerra.

B Manar H. Alalfi
alalfi@cs.queensu.ca

Elizabeth P. Antony
antony@cs.queensu.ca

James R. Cordy
cordy@cs.queensu.ca

1 School of Computing, Queen’s University, Kingston, ON,
Canada

model and allowing us to granularize behavioural interac-
tions into conversational units. Then we adapt NICAD, a
robust near-miss code clone detection tool, to help us iden-
tify conversational clones in reverse-engineered behavioural
models. These conversational clones are then analysed to find
worrisome interactions that may indicate security access vio-
lations.

Keywords Model clone detection · Model based security
analysis

1 Introduction

UML behavioural models, such as sequence diagrams, can
be used to represent the complex dynamic interactions of
interactive systems such as web applications. Using life-
lines to represent concurrent processes such as the user, the
browser, the server, the back-end database and the various
threads within them, sequence diagrams document behav-
iour as sequences of interactions between the lifelines using
events, messages and other communications. Sequence dia-
grams can be used in forward engineering to specify intended
behaviour, or in reverse engineering to observe and document
actual behaviour. In our previous work [2,3], the run-time
behaviour of web applications was reverse-engineered to
UML sequence diagrams (SDs) that describe the entire his-
tory of interactions in a web application session. Using an
automated test harness based on WATIR [32] to exercise
the application in various different roles, behaviour of the
application for users in those roles was documented and the
behaviour was compared to the behaviour of other roles.
Given the complexity of production interactive web applica-
tions, reverse-engineered sequence diagrams are often very
large and hence difficult to analyse by hand. In particular,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0557-6&domain=pdf

www.manaraa.com

1288 M. H. Alalfi et al.

the identification of repeated sequences of behaviour (con-
versations) between components is simply impractical to do
manually.

This paper is an extended version of an early results short
paper presented at the International Working Conference on
Reverse Engineering, WCRE 2013 [7], in which we pro-
posed an automated approach to analysing UML sequence
diagrams to identify repeated patterns of similar interactions
using the NICAD near-miss code clone detector [10]. In
order to leverage robust near-miss code clone technology,
our approach is text-based, working on the level of XMI,
the standard interchange serialization for UML. Unlike pro-
gramming languages, the XMI text representation for UML
is highly non-local, using attributes to reference informa-
tion in the model file remotely. In this work, we use a set
of contextualizing source transformations on the XMI text
representation to reveal the hidden hierarchical structure
of the model and granularize behavioural interactions into
conversational units. Clone detection is then applied to a con-
textualized text representation of the models that compares
self-contained hierarchical text descriptions of interaction
sequences using source transformations of the XMI inter-
change representation of the UML behavioural model.

Clone detection in behavioural models has many applica-
tions. For example, it can be used to identify repeated similar
behaviours with the aim of model refactoring or to identify
instances of similar conversations so that bug fixes, updates
and changes can be applied consistently, thus enhancing the
quality of the resulting software systems. In this paper, we
leveraged cross-clone detection (identifying similar behav-
iours across different models) in a case study using clone
detection to find worrisome conversational patterns that may
indicate security access violations.

Code clone detection has been used to identify malware
in software systems, as in the work of Karademir et al. to
find embedded Javascript malware in Acrobat files [14] and
Farhadi at al.’s system to find malware assembly code clones
in disassembled application binaries [12] . However, as code
obfuscation methods become more and more sophisticated,
it is increasingly difficult to detect security issues in mobile
and other interactive systems using code analysis techniques
alone.

On the other hand, however, the code is obfuscated, in
order to achieve their goals, the behaviour of these malware
variants necessarily remains similar, and thus by studying
similarity of behaviour we can uncover threats that may not
be able to be detected using code analysis. More generally,
similarity of behaviour can often expose the relationship
between different code implementations of any process
aimed at achieving the same or similar results. Thus the abil-
ity to detect similar behaviour patterns, rather than simply
similar code patterns, is increasingly important.

This paper makes the following three contributions:

1. A detailed description of a new approach for identifying
near-miss clones in behavioural models with a focus on
UML sequence diagrams (SDs). Ourmethod is is the first
scalable approach to identifying model clones in large
reverse-engineered sequence diagrams.

2. A precise definition of model clones in sequence dia-
grams, based on the concept of encapsulated interaction
sequences (“conversations”).

3. An automated process for the identification and encap-
sulation of interaction sequences as self-contained con-
versational units, which are then used as the units of
comparison for model clone detection. We evaluate
our clone detection approach on a number of reverse-
engineered SD models of various sizes.

4. A case study demonstrating the utility of behavioural
clone detection, by using cross-clone detection between
reverse-engineered SD models representing interaction
sequences of different user roles o identify potential secu-
rity access violations in an open source web application
(phpBB).

The rest of this paper is organized as follows. We begin
with background information in Sect. 2, where we introduce
the elements of basic UML sequence diagram models in the
XML-based metadata interchange format (XMI) representa-
tion. We also introduce terminology that is used throughout
the paper. In Sect. 3, we introduce our approach to iden-
tifying conversational clones in basic SD models. Using a
running example, we provide details of the identification,
contextualization and extraction process that yields self-
contained conversational units, and motivate the need for
normalization to remove irrelevant differences before com-
parison. InSect. 4,wediscuss the results of clone detection on
the extracted conversations of reverse-engineered SD mod-
els, along with a brief analysis of the results. Then, we
presents an example of the application of SD model cross-
clone detection to identifying security access violations in
reverse-engineered SDs of web applications run in various
roles. Finally, Sect. 6 concludes and outlines opportunities
for future work.

2 Background

UML sequence diagrams (SDs) are 2-dimensional graphi-
cal models used to represent the interaction between various
objects or actors in a system, encoding the order in which
events and message interactions between the actors occur.
They are mainly used tomodel the behaviour of web applica-
tions and other interactive applications where the sequencing
of interactions over time needs to be specified.

Figure 1 shows an example highlighting themain elements
in a basic sequence diagram. Sequence diagram model clone

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1289

Fig. 1 Elements of a basic sequence diagram

Fig. 2 Example of SD conversation clones

detection entails discovering similar or identical sequences
of behavioural interaction (“conversations”). Unlike source
code, which is represented as linear text, models are typically
represented visually, as box-and-arrow diagrams. Model
clones can thus be thought of as similar patterns of these
diagrams. Figure 2 shows an example of an SD model clone,
in this case a repeated conversation between two lifelines.

2.1 Clones in sequence diagrams

We define clones in SDs to mean repeated patterns of similar
or identical interaction elements that form complete conver-
sations. A conversation is defined as a sequence of message
interactions between two or more lifelines over a specific
period of time (i.e. in the span of a BES). In this paper, we are
primarily interested in identifying repeated conversations,

and we define SD clones from this perspective. Code clones
[22] and model clones [6] have been classified into types 1,
2 and 3, according to the level of similarity they exhibit. For
SD clones, we extend these definitions as follows:

1. Type 1 (exact): Conversations with identical interac-
tion elements except for variations in visual presen-
tation, layout and formatting. For instance, sequence
diagram “message” elements with identical “name”,
“receiveEvent”, “sendEvent” and “messageSort”
attributes, but possibly different presentation fonts, sizes,
physical coordinates, or colours.

2. Type 2 (renamed): Conversations that may differ in the
names of elements attributes values , as well as varia-
tions in visual presentation, layout and formatting. For
instance, two lifeline elements covered by a similar set of
conversation messages but possibly different “name” or
“xmi:id” attributes as well as different presentation fonts,
sizes, physical coordinates or colors. Such lifelines are
considered Type 2 clones as long as those lifelines are
covered by similar set of messages in a specific conver-
sation.

3. Type 3 (near miss): Conversations that have small dif-
ferences such as additions, deletions or modifications of
interaction elements, in addition to differences in the
names of elements attribute values, and variations in
visual presentation, layout and formatting. For instance,
two conversations are considered Type 3 clones if the
order or number of messages in the conversation is
slightly different, in addition to the differences allowed
by Types 1 and 2. The amount of difference allowed can
be varied according to a configurable threshold.

3 Approach to clone detection

Behavioural model clone detection presents a number of
challenges—first, it is not clear how to break a continu-
ous stream of interaction between lifelines (representing
the objects or actors in the system) into meaningful con-
versational units. Second, unlike programming languages,
the XMI text representation for UML is highly non-local,
using attributes to reference-related elements in themodel file
remotely. In this work, we use a set of contextualizing source
transformations on the XMI text representation to localize
related elements, exposing the hidden hierarchical structure
of themodel and allowing us to granularize behavioural inter-
actions into conversational units. Then we adapt NICAD, a
robust near-miss code clone detection tool, to help us iden-
tify conversational clones in reverse-engineered behavioural
models. These conversational clones are then analysed to find
worrisome interactions that may indicate security access vio-
lations.

123

www.manaraa.com

1290 M. H. Alalfi et al.

Fig. 3 The steps of our approach to SD model clone detection

To address the above challenges, our approach to SD
model clone detection consists of fourmain stages (Fig. 3). In
the first stage, identification and consolidation, sequences of
behavioural interactions in the XMI sequence diagram seri-
alization are identified and consolidated into conversations,
revealing the hierarchical conversation structure of themodel
in the textual SD representation.

In the second stage, contextualization, the consolidated
conversations are made independent of their context, by
replacingXMI references to other parts of themodel by inlin-
ing of the parts referred to. Following this transformation, the
consolidated conversations in the XMI textual representation
are self-contained, including all of the interaction elements
that form the conversation.

In the third stage, normalization and extraction, the self-
contained XMI representations of the conversations are
extracted for comparison, normalized to remove irrelevant
formatting and layout elements, and renamed to remove irrel-
evant naming differences in the XMI textual representation
to make the process of clone identification more accurate.

The first three stages use TXL [9] source transforma-
tions to transform the textual SD representation and extract
self-contained conversational units. The final stage, clone
detection and analysis, uses NICAD [10], a standard code
clonedetector, to automatically identify cloned conversations
in the large set of contextualized and normalized conversa-
tional units. In the following subsections, we elaborate each
of these stages in more detail.

3.1 Identification and consolidation

The flat structure of the XMI sequence diagram representa-
tion (Fig. 4) offers little locality—fragments and elements of

conversations are spread across theXMI text, using attributes
and textual ordering to reference and implicitly group related
elements.

Behaviour execution specifications (BESs), for example,
(e.g. green highlight in Fig. 4), reference the lifeline they
are part of using the covered attribute, and to the sequence
of messages and events comprising their associated conver-
sation using the start and finish attributes. These attributes
reference thefirst and last elements of the sequence that forms
the conversation, implicitly including the elements textually
between them, and these included elements in turn refer to
their parts using attributes in similar fashion.

In order to make this scattered representation of con-
versations amenable to comparison, we need to recursively
gather the referenced and related elements of BES conversa-
tions together and organize them into an explicit hierarchical
representation of the interaction structures they represent.
This restructuring or the transformation process consists of
twomain steps: identifying and consolidating conversational
units into a hierarchy, and then contextualizing these units to
be independent of their surroundings, as shown in Fig. 3.

3.1.1 Identification: defining a level of granularity

Identifying cloned behavioural interactions in a large-scale
reverse-engineered SDs poses significant issues of scale.
For that reason, we have adapted a highly scalable code
clone detector, NICAD [10], to work on behavioural mod-
els. NICAD has previously been used in detecting clones
in programming languages such as C, C#, Java, Python and
other programming languages, and more recently has been
extended and specialized to finding model clones, as part of
the Simone model clone detector [6].

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1291

<packagedElement xmi:type="uml:Collaboration" xmi:id="_fhwvcGGTEeO5r4_cb_qIFw" name="Collaboration1">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="INT1Id" name="Interaction1">
<ownedConnector xmi:type="uml:Connector" xmi:id="OC1Id">
<end xmi:type="uml:ConnectorEnd" xmi:id="OCE1Id" role="PROPL2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OCE2Id" role="PROPL1Id"/>

</ownedConnector>
< lifeline xmi:type="uml:Lifeline " xmi:id="L1Id" name="l1" represents="PROPL1Id" coveredBy="MOS1Id MOS4Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="L2Id" name="l2" represents="PROPL2Id"

coveredBy="MOS2Id BES1Id MOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="L1Id" event="SOE1Id"

message="Msg1Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="L2Id" event="ROE1Id"

message="Msg1Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="L2Id" start="MOS2Id"

finish="MOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="L2Id" event="SOE1Id"

message="Msg1ReplyId"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="L1Id" event="ROE1Id"

message="Msg1ReplyId"/>
<message xmi:type="uml:Message" xmi:id="Msg1Id" name="Msg1" receiveEvent="MOS2Id" sendEvent="MOS1Id"

connector="OC1Id"/>
<message xmi:type="uml:Message" xmi:id="Msg1ReplyId" name="Msg1" messageSort="reply" receiveEvent="MOS4Id"

sendEvent="MOS3Id" connector="OC1Id"/>
</ownedBehavior>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPL1Id" name="l1" type="CLSSL1Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPL2Id" name="l2" type="CLSSL12d"/>

</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="CLSSL1Id" name="L1"/>
<packagedElement xmi:type="uml:Class" xmi:id="CLSSL12d" name="L2">
<ownedOperation xmi:type="uml:Operation" xmi:id="OOCLSS2Id" name="Msg1"/>

</packagedElement>
<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SOE1Id" name="SendOperationEvent1"

operation="OOCLSS2Id"/>
<packagedElement xmi:type="uml:ReceiveOperationEvent" xmi:id="ROE1Id" name="ReceiveOperationEvent1"

operation="OOCLSS2Id"/>

Fig. 4 An example showing the various elements of the XMI repre-
sentation of a SDConversations are represented by behaviour execution
specification elements (green), associated with lifelines (purple), and
consisting of messages, events and operations (red). Relationships

between elements in the XMI textual representation are represented
both implicitly, by sequential adjacency, and explicitly, using attributes
referencing other elements

NICAD is designed to find code clones of a given gran-
ularity, such as functions, blocks or statements. It begins by
enumerating all of the instances of the desired units in the
code and then comparing them pairwise for near-miss sim-
ilarity within a defined difference threshold. In Simone, the
units of model comparison are Simulink subsystems, which
compare roughly to functions or classes in traditional pro-
gramming languages.

Unlike Simulink models, the XMI serialization of UML
sequence diagrams does not have an explicit nested structure.
Rather, it is a flat sequence of individual elements linked by
attributes as described above. Thus one of the main chal-
lenges in using NICAD to analyse sequence diagrams for
clones is understanding how to reverse-engineer the hidden
nested structural representation of interaction conversations
from the flat representation of the original XMI SD serial-
ization.

The second major challenge is simply the identification
of an appropriate level of granularity for comparison. In SD
conversations, individual messages are very small and would
yield a huge number of clones that would not be useful or
relevant for most applications. On the other hand, compar-
ing the interactions of entire lifelineswould likely reveal very
few clones andwouldmiss clones ofmany interesting shorter
interactions. Thus, we decided to break lifelines into grouped
sequences of interactions with other lifelines, based on the
SD behavioural execution specification (BES) elements of

Fig. 5 An example SD fragment, showing the BES andMOS elements
with their corresponding Ids from the XMI representation

the lifeline. We call these grouped sequences conversations,
since they encapsulate complete sequences of related inter-
actions initiated by one lifeline with others.

Figure 5 shows an example interaction, with message
occurrence specification (MOS) and behavioural execution
specification (BES) elements labelled with the XMI Ids of
their XMI textual representation. The XMI Id is a unique
identifier assigned to each element of the SD in its XMI
textual form. (In the figure, XMI Ids have been renamed to
simpler identifiers to aid understanding of the example.) In

123

www.manaraa.com

1292 M. H. Alalfi et al.

. . .
<packagedElement xmi:type="uml:Collaboration" xmi:id="Collaboration1Id" name="Collaboration1">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="INT1Id" name="Interaction1">
<ownedConnector xmi:type="uml:Connector" xmi:id="OC3Id">
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End1Id" role="PROPl2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End2Id" role="PROPl3Id"/>

</ownedConnector>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl1Id" name="l1" represents="PROPl1Id" coveredBy="MOS1Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl2Id" name="l2" represents="PROPl2Id" coveredBy="MOS2Id BES1Id

EOS3Id MOS3Id MOS4Id BES2Id EOS1Id MOS5Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl3Id" name="l3" represents="PROPl3Id" coveredBy="MOS6Id BES3Id

EOS2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="LFLNl1Id" event="SOE1Id"

message="MSG1Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="LFLNl2Id" event="ROE1Id"

message="MSG1Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="LFLNl2Id" start= "MOS2Id"

finish="EOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="LFLNl2Id" event="SOE2Id"

message="MSG2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="LFLNl2Id" event="ROE2Id"

message="MSG2Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES2Id" covered="LFLNl2Id" start="MOS4Id"

finish="EOS1Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS1Id" covered="LFLNl2Id" event="EE1Id"

execution="BES2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS5Id" covered="LFLNl2Id" event="SOE3Id"

message="MSG3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id"

message="MSG3Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES3Id" covered="LFLNl3Id" start="MOS6Id"

finish="EOS2Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS2Id" covered="LFLNl3Id" event="EE1Id"

execution="BES3Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS3Id" covered="LFLNl2Id" event="EE1Id"

execution="BES1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG1Id" name="Msg1" messageSort="asynchCall" receiveEvent="MOS2Id"

sendEvent="MOS1Id" connector="OC1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG2Id" name="Msg2" messageSort="asynchCall" receiveEvent="MOS4Id"

sendEvent="MOS3Id" connector="OC2Id"/>
<message xmi:type="uml:Message" xmi:id="MSG3Id" name="Msg3" messageSort="asynchCall" receiveEvent="MOS6Id"

sendEvent="MOS5Id" connector="OC3Id"/>
</ownedBehavior>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl2Id" name="l2" type="CLSSL2Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl3Id" name="l3" type="CLSSL3Id"/>

</packagedElement>
. . .

Fig. 6 Step I: Identification of BES fragments in the XMI representation Identified BES fragments are shown in green. The beginning and ending
elements referred to by the first BES conversation are shown in red, and its invoking MOS is shown in purple

the example of Fig. 5, there are three labelled BES fragments,
BES1Id, BES2Id and BES3Id, corresponding to the three
BES elements of the XMI representation, shown in Fig. 6.
In the XMI representation, the start and finish attributes of
the BES elements indicate by reference the beginning and
ending elements of the BES’s conversation in the flat XMI
representation, and the covered attribute identifies the corre-
sponding lifelines. It should also be noted that conversations
are often nested—in the example of Fig. 5, the conversa-
tions identified by BES2Id and BES3Id are part of the main
conversation identified by BES1Id.

3.1.2 Consolidation: creating a conversational unit

For each BES element identified in the XMI represen-
tation, we create a conversation container unit identified
by <BES>...</BES> tags. The consolidation step draws the
messages and execution occurrences that are part of the each
BES into the corresponding BES conversation units. That is,
we gather and nest all of the conversational elements of the
BES into the container. The start and finish attributes of each

BES specify the elements in the flat representation that begin
and end the BES’s conversation.

Because message, behaviour and event occurrences have
a general sequential ordering in the XMI representation, this
step primarily involves moving the elements adjacent to the
BES element inside the new <BES >...</BES > container.
Elements immediately before the BES element, beginning
with the one referenced by its start element, represent the
message(s) that initiate the conversation. Elements following
the BES element, beginning with the one immediately adja-
cent and ending with the one specified by its finish attribute,
represent themessages, executions and subconversations that
are part of the conversation. Recursively consolidating BES
conversation units yields an explicit hierarchy of conversa-
tions such as the one shown in Fig. 8.

Identification, consolidation and contextualization are
implemented as structural transformations of the XMI tex-
tual representation using the TXL [9] source transformation
system. Beginning with a general grammar for parsing the
XMI representation of UML sequence diagrams, a set of
structural transformation rules is created to identify, consoli-

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1293

rule restructBES
replace [xmi_element*]

<fragment ’xmi:type="uml:BehaviorExecutionSpecification" ’xmi:id=BESId [attvalue] ’covered=LifelineId [attvalue]
’ start=StartId [attvalue] ’ finish =FinishId [attvalue] />

MoreElements [xmi_element*]

deconstruct * MoreElements
< Element [id] ’xmi:type=Type [attvalue] ’xmi:id=FinishId Attributes [tag_attribute *] />
RemainingElements [xmi_element*]

construct FinishFrag [xmi_element]
< Element ’xmi:type=Type ’xmi:id=FinishId Attributes />

construct MessagesOfBES [xmi_element*]
_ [addElements FinishId MoreElements]

by
<BES ’start=StartId ’ finish =FinishId>

<fragment ’xmi:type="uml:BehaviorExecutionSpecification" ’xmi:id=BESId ’covered= LifelineId ’ start= StartId
’ finish = FinishId >

MessagesOfBES [. FinishFrag]
</fragment>

</BES>
RemainingElements

end rule

Fig. 7 TXL rule to consolidate BES conversations

date and contextualize BES specifications into self-contained
hierarchical units. Figure 7 shows an example TXL rule to
consolidate the conversational elements of each BES up to
the element identified by its finish attribute’s value, FinishId,
in the XMI serialization. The result of consolidating the three
example BES conversations identified in Fig. 6 is shown in
Fig. 8.

3.1.3 Contextualization: making units whole

As shown in Fig. 8, consolidated BES conversations con-
sist of embedded BESs, Message Occurrence Specifications
(MOSs) and Execution Occurrence Specifications (EOSs)
describing the conversation’s interactions with other life-
lines. Similar to BESs themselves, these elements use XML
attributes to refer to other elements such as messages, types
and lifelines that describe their meaning.

Figure 9 illustrates how the attributes of each MOS and
the EOS in consolidated BES conversations refer to other
elements in the XMI representation. The attributes of these
elements in turn reference other elements, and so on, as illus-
trated in Fig. 10.

Contextualization draws in the elements of the context
that are referenced by the BES elements that are directly
part of the conversation. That is, it brings all the elements
involved—the lifelines, properties, events and messages—
into the contextualized BES unit. The result is a complete
self-contained description of each conversation, independent
of its surroundings.

To contextualize a consolidated BES, each Message
Occurrence Specification (MOS) and Event Occurrence
Specification (EOS) fragment in the BES is converted to a
container tag, and the elements referred to by the attributes
of the fragment are inlined into the container. In this way,
the BES becomes an independent self-contained unit with

no dependence on its context. For example, MOS fragments
have covered, event and message attributes, as shown in
Fig. 10. These attributes represent the lifeline, event andmes-
sage of the Message Occurrence Specification.

Contextualization proceeds recursively. Thus to inline
the covered attribute of the second MOS in the third
embedded BES example of Fig. 9, the <lifeline> element
with id LFNI2Id, referred to by the attribute, is located
and copied into the container tag of the MOS. From the
inlined <lifeline> element, the <ownedAttribute> element
with xmi:id=“PROPl2Id”, referred to by the lifeline’s repre-
sents attribute, is then inlined to include the property/object
of the class that the lifeline covers. Similarly, the elements
referenced by the event attribute are inlined recursively until
there are no more elements left.

For the event attribute of the MOS, which specifies
whether the message occurrence is a send or receive
event, we inline the corresponding <packagedElement>with
xmi:id=“SOE3Id” and, from its operation attribute, the
corresponding <ownedOperation> element is then inlined.
Finally, themessage attribute of the MOS references the cor-
responding <message> element. The <message> element, in
turn inlines the sending and receiving MOS of the message
with the sendEvent receiveEvent attributes, and the <owned-
Connector> element referenced by the connector attribute,
which represents the end points of the message where they
connect to the lifelines.

Similarly each MOS and EOS fragment in the consoli-
dated BES is converted to a container tag and contextualized
by recursively inlining the elements referred to by its
attributes in a similar fashion, yielding a completely con-
textualized BES conversation, as shown in Fig. 11.

Inlining the elements of each BES in this way creates
a set of self-contained interaction units for comparison in
clone detection. Our process of contextualization is very

123

www.manaraa.com

1294 M. H. Alalfi et al.

. . .
<packagedElement xmi:type="uml:Collaboration" xmi:id="Collaboration1Id" name="Collaboration1">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="INT1Id" name="Interaction1">
<ownedConnector xmi:type="uml:Connector" xmi:id="OC3Id">
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End1Id" role="PROPl2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End2Id" role="PROPl3Id"/>

</ownedConnector>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl1Id" name="l1" represents="PROPl1Id" coveredBy="MOS1Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl2Id" name="l2" represents="PROPl2Id" coveredBy="MOS2Id BES1Id

EOS3Id MOS3Id MOS4Id BES2Id EOS1Id MOS5Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl3Id" name="l3" represents="PROPl3Id" coveredBy="MOS6Id BES3Id

EOS2Id"/>
<BES>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="LFLNl2Id"

start="MOS2Id" finish="EOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="LFLNl1Id" event="SOE1Id"

message="MSG1Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="LFLNl2Id" event="ROE1Id"

message="MSG1Id"/>
<BES>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES2Id" covered="LFLNl2Id" start="MOS4Id"

finish="EOS1Id">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="LFLNl2Id" event="SOE2Id

" message="MSG2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="LFLNl2Id" event="ROE2Id

" message="MSG2Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS1Id" covered="LFLNl2Id" event="EE1Id"

execution="BES2Id"/>
</fragment>

</BES>
<BES>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES3Id" covered="LFLNl3Id" start="MOS6Id"

finish="EOS2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS5Id" covered="LFLNl2Id" event="SOE3Id

" message="MSG3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id

" message="MSG3Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS2Id" covered="LFLNl3Id" event="EE1Id"

execution="BES3Id"/>
</fragment>

</BES>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS3Id" covered="LFLNl2Id" event="EE1Id"

execution="BES1Id"/>
</fragment>

</BES>
<message xmi:type="uml:Message" xmi:id="MSG1Id" name="Msg1" messageSort="asynchCall" receiveEvent="MOS2Id"

sendEvent="MOS1Id" connector="OC1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG2Id" name="Msg2" messageSort="asynchCall" receiveEvent="MOS4Id"

sendEvent="MOS3Id" connector="OC2Id"/>
<message xmi:type="uml:Message" xmi:id="MSG3Id" name="Msg3" messageSort="asynchCall" receiveEvent="MOS6Id"

sendEvent="MOS5Id" connector="OC3Id"/>
</ownedBehavior>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl1Id" name="l1" type="CLSSL1Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl2Id" name="l2" type="CLSSL2Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl3Id" name="l3" type="CLSSL3Id"/>

</packagedElement>
. . .

Fig. 8 Step 2: Consolidation of BES elements The sequence of mes-
sages and other elements comprising each BES conversation have been
consolidated into new BES conversation elements. For example, all the
elements between the starting and ending elements (red) of the first BES

conversation (BES1Id), as well as its invoking MOS element (purple),
have been moved inside its new BES wrapper, and similarly for the
embedded BES elements BES2Id and BES3Id, recursively

similar to the work of Martin et al. [16] in identifying
contextual clones in WSDL documents, where the <oper-
ation> elements of a WSDL document are contextualized
by inlining each operation description element into Web
Service Cells, or WSCells. Similarly to WSDL documents,
the contextualization stage is necessary to consolidate all
the conversation elements into self-contained units from the
XMI representation of SDs. While in general all elements
referenced by element attributes are inlined, in order to
avoid repetition of information and unbounded recursion,
some attributes must not be inlined during contextualiza-
tion:

1. type The type attribute of the <ownedAttribute> element
is not expanded as it would inline the entire element’s
class. We are only interested in the name of the class and
its operations in the conversation. Operations are inlined
from the operation attribute of MOS fragments.

2. connector Similarly, the connector attribute of <mes-
sage> elements is not contextualized, because the end
attribute of the <ownedAttribute> element inlined from
a <lifeline> element already inlines it as end point of the
MOS.

3. execution The execution attribute of an Execution Occur-
rence Specification (EOS) refers to the BES element that

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1295

Fig. 9 Elements referenced by the attributes of elements in the XMI text of a BES (adapted from [7])

Fig. 10 Elements indirectly referenced by attributes of the elements in the XMI text of a BES (adapted from [7])

it is part of. Inlining this link would simply duplicate the
information.

3.2 Extraction and clone comparison

The NICAD clone detector works by parsing a source pro-
gram and extracting all of the code fragments of a particular
granularity (potential clones) to be compared for similarity.
NICAD comes packaged with number of extractor modules
for a number of standard programming languages at different
granularities such as classes, functions and blocks. NICAD
uses a plug-in architecture [10] which allows for easy addi-

tion of new languages and granularities by supplying a TXL
[9] grammar and fragment extractor for the new language.

3.2.1 Extraction

In order to use NICAD to find SD conversation clones, we
used a generic XMI element grammar to parse the con-
solidated and contextualized XMI textual form of the SD
models, and specified our contextualized <BES> elements
as the fragments to serve as potential clones. The XMI gram-
mar simply defines the generic form of XMI elements. This

123

www.manaraa.com

1296 M. H. Alalfi et al.

Fig. 11 A fully contextualized BES conversation unit (adapted from [7])

<source file="SDModels/AnonSeq..." startline="3341" endline="3404">
<BES start="34505RHttp" finish="EventOccHttp56">

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExecHttp56" covered="0L"
start="3450..." finish ="Event... ">

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="34505RHttp" covered="0L"
event="ReciveOpHttp56" message="Mess..56">

...
</fragment>

</fragment>
</BES>

</source>

<source file="SDModels/AnonSeq..." startline="3573" endline="3648">
<BES start="34505R" finish="EventOcc56">

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec56"
covered="phpbb_forumsphpbb_topics" start="34505R" finish="EventOcc56">

<fragment xmi:type="uml:MessageOccurrenceSpecition" xmi:id="34505Rback" covered="0L"
event="Reciveback56" message="Messback56">

...
</fragment>

</fragment>
</BES>

</source>
...

Fig. 12 Example potential clones extracted by NICAD Every consol-
idated, contextualized BES conversation element in the XMI textual
representation of the model is extracted as a potential clone to be com-

pared. Potential clones are wrapped in <source> tags that track their
original location in the XMI model files so that clones can be related
back to their original models and BES elements

unconstrained definition yields a rough parse of the contex-
tualized XMI text sufficient for our purposes.

To make a NICAD extractor for contextualized BES con-
versation fragments, we simply specialize the generic XMI
grammar to recognize <BES> elements specially, and tell
NICAD to use bes_fragment as the unit of granularity for
clone detection.

An example of the extracted potential clones is shown
in Fig. 12. Each extracted potential clone (pc) is wrapped
in <source> tagswith the original file name, starting line (line
number where the text representation of the BES unit begins
in the XMI model file) and ending line (line number where
the text representation of the BES unit ends) as attributes.

3.2.2 Clone comparison

The extracted conversation potential clones are compared
by NICAD line by line using an optimized longest common
subsequence (LCS) algorithm up to a specified near-miss dif-
ference threshold. The threshold specifies an upper limit on
the fraction of lines in potential clones that can differ in order
for them to be considered near-miss clones. For example, a
difference threshold of 20% would allow for up to two lines
in ten to be different in conversation clones.

An example of a near-miss conversation clone pair
reported by NICAD in a reverse-engineered SD model is
shown in Fig. 13. The near-miss conversation clones in the

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1297

Fig. 13 BES conversation clone pair reported by NICAD visualized in Rational Software Architect

123

www.manaraa.com

1298 M. H. Alalfi et al.

example are identical except for themessage that initiates the
conversation. These clones are exact near-miss (clone Type
3) clones, that is, there are identical in every respect except
for a small number of individual differences (in this case,
one).

3.3 Normalization

While near-miss identical clones are interesting, they are rare
in the XMI representation of SD models. This is because
the XMI textual representation is constrained to use unique
names for each element in the model, in order to facilitate
graphical rendering in the user interface. These unique names
cause multiple instances of visually identical to be very dif-
ferent in their XMI textual representation—different enough
that their textual similarity does not fall within the small dif-
ference thresholds needed to accurately detect conversation
clones.

When faced with these artificial differences in representa-
tion, there are two choices for a clone detector: either raise the
difference threshold to a higher number, allowing for exam-
ple 50% of XMI text lines to be different, or stay with a small
difference threshold, finding very few clones. In the first case,
the resulting precision will be very low, reporting many false
positives, because very little similarity is required. In the sec-
ond case, the resulting recall with be very low, missing many
visually similar conversation clones because the XMI textual
representation has different naming.

The solution to this problem is normalization, the removal
of artificial differences from the comparison of potential
clones. In this section, we highlight the normalization steps
used in our method and their effect on enhancing results. Our
normalization has been specifically refined to improve preci-
sion from theperspective of our applicationof clonedetection
to detecting security access violations as detailed in Sect. 4.
The normalization step can be tailored to the SDmodels; thus
for other applications, it may be different depending on the
information we are interested to compare.

3.3.1 Reducing redundancy

To address this issue, we apply two kinds of normal-
ization: removal of redundant elements, which tend to
multiply the effect of small differences, and “blind” renam-
ing, which removes differences between element names.
Both normalizations are implemented as TXL source trans-
formation plugins to the NICAD clone detector, which
allows for normalization of the extracted potential clones
(in our case the contextualized BES conversations) before
clone comparison. The first normalizing transformation
simply removes redundant elements in the contextualized
potential clones, such as the <operation> element referred
to by the event attribute of a <packagedElement> with

xmi:type=“ReceiveOperationEvent”, which is always the
same as the <operation> element referenced by the cor-
responding xmi:type=“SendOperationEvent” and thus is
redundant.

3.3.2 Blind renaming

The second normalizing transformation implements “blind”
renaming of element names in the extracted contextualized
potential clones. The general strategy of blind renaming is
to replace all identifiers in the potential clones with the same
identifier, for example “X”.

The generic blind renaming algorithm that is packaged
with NICAD is context independent and does this for all
identifiers in a potential clone. For this reason, it cannot be
used for sequence diagram (SD) models, because it does not
distinguishbetween element names (XMI ids) andother iden-
tifiers, such as element types. These can only be distinguished
by their context in the XMI structure, and thus it was nec-
essary to craft a custom context-dependent blind renaming
plugin for SD models.

The context-dependent blind renaming transformation for
SD models is implemented in TXL using a technique called
agile parsing [11], in which the generic XMI grammar is
specialized to distinguish the forms we are interested in
renaming from those that should not be renamed. For exam-
ple, in our approach, the TXL grammar “overrides” is used
to distinguish XMI elements whose attributes that should be
blind renamed from those that should not. Within the dis-
tinguished contexts, blind renaming is applied to all XMI
attribute identifiers, except those that carry relevant distin-
guishing information, such as the type of the XMI element,
the role of the lifelines involved in an operation, or the name
of the class of a message, event or operation.

Figure 14 shows the TXL source transformation rule that
does the actual renaming for most contexts. All attributes
except xmi:type, xmi:role and xmi:name are renamed to the
identifier “BR” by the rule. In some special contexts, the
xmi:name attribute must also be renamed. Figure 15 shows
the effect of blind renaming on a small section of an extracted
contextualized BES conversation.

4 A case study in SD clone detection

In this section, we use an application of SD clone detection
to address the following research questions and to evaluate
the precision and recall of our method.
RQ1: Is our approach capable of detecting patterns of similar
conversations in SDs?
RQ2: To what extent does the normalization stage of our
approach enhance accuracy of the results?

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1299

rule blindRenameAttributes
% Attributes that should not be blind renamed
construct RelevantIds [id*]

’name ’type ’role

replace $ [attribute]
XMIColon [xmi_colon] TagId [id] = TagAttr [attribute_value]

% Guard to make sure it is not one of the relevant ones
deconstruct not * [id] RelevantIds

TagId

by
XMIColon TagId = "BR"

end rule

Fig. 14 TXL rule to blind rename irrelevant XMI element attributes

RQ3:Can the approach be useful in real-world applications,
and how does it perform regarding precision and recall?

In this section, we first describe the SDmodels used in the
experiment and address the first research question by apply-
ing our approach to these models without any normalization.
We then address the second research question by compar-
ing the results of our SD clone detection on these models
with and without normalization. Finally, we address the third
research question by using our SD clone detection technique
to detect access control violations that appear as patterns in a
set of reverse-engineered sequence diagrams from a vulnera-
ble web applicationwith forced browsing, and comparing the
results to an existing heavyweight security analysis approach.
The results of the experiment are promising, using light-
weight SD clone detection to find potential security risks
with 100% recall and 86% precision when compared to the
previous heavyweight model-checking approach.

4.1 Clone detection in SD models

In this section, we discuss the results obtained from basic
clone detection on the reverse-engineered SD models. We
first provide results without normalization, followed by a
careful analysis of results after normalization. Near-miss
clone detectors use a similarity threshold to specify howclose
two fragments need to be to be considered clones. InNICAD,
this is specified using a “difference threshold”, the percent-
age of total lines that may differ in a clone pair. Selection
of an appropriate difference threshold depends on the appli-
cation and must be tuned empirically. In the next section,
we demonstrate, using a brief example, both the need for
normalization and the selection and appropriate difference
threshold for SD models.

4.1.1 Design-recovered SD models

Our approach differs from existing techniques in its ability
to handle very large, reverse-engineered sequence diagrams
efficiently. The SD models we use here were obtained from
previous work by Alalfi et al. [2,3] on automatically recover-
ing SD behavioural models from dynamic web applications,

in particular frommultiple execution scenarios of the popular
web forum application phpBB 2.0 in different user roles. We
worked with seven such recovered models of various sizes
ranging from 752 to 469,356 XMI lines.

For each user role, there are two sets of reverse-engineered
SDmodels. In each case, the models differ in size depending
on the extent of web application coverage during visits to the
forum in each user role. For the anonymous user role, we
have two sets of reverse-engineered SD models, AnonSD1
and AnonSD2. Both models represent the interactions of an
anonymous user visiting the phpBB forum. They differ in
size according to the extent of coverage.

For the registered user role, we again have two sets of
reverse engineered SDmodels, RegSD1 and RegSD2. These
models represent the interaction sequences of a registered
user accessing the forum.

Next, we have two sets of models representing execu-
tion traces of an anonymous user with forced browsing (that
is, an anonymous user attempting to directly access links
only intended for an administrator), ForcedAnonSD1 and
ForcedAnonSD2.

Finally, the last model represents an administrator user’s
role, showing the interaction traces of an administrator
exploring the phpBB forum (AdminSD).

Each model is preprocessed as detailed in Sect. 3.1.3 to a
contextualized representation, and the resulting file is given
the extension .sd. The contextualized model is then input
to the NICAD clone detector, and the results are reported in
bothHTML andXML formats alongwith a log. By default in
NICAD, these formats have reports generated displaying the
various clone pairs in the model along with start and end line
numbers of the clones in the contextualized representation.
NICAD reports both clone pairs (with and without original
source) and clone classes (groups of mutually similar clone
pairs within the difference threshold). Clones grouped in
classes are also reported both with and without original XMI
source text, and with a class identifier (“classid”) assigned to
each class. For our analysis, we used the NICAD clone pairs
reports, both with and without source. The reader is referred
to the work by Roy et al. [20] for further details on how clone
pairs are created and grouped into classes by NICAD.

123

www.manaraa.com

1300 M. H. Alalfi et al.

(a) Before blind renaming
<source file="SDModelsDec2T10BR/AnonWthAdmnLnks/AnonWithAdminLinks.sd" startline="13198" endline="13443"

pcid="73">
<BES start="52045R" finish="ownedOp1252">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec1252" covered="phpbb_forums..."

start="52054R" finish="ownedOp1252">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="52054S" covered="0L" event="SendOp1282"

message="Mess1282">
...
<eventTag event="SendOp1252">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SendOp1252" name="SendOperationEvent1252"
operation="ownedOp1252">

<operationTag operation="ownedOp1252">
<ownedOperation xmi:type="uml:Operation" xmi:id="ownedOp1252"

name="Select(search,t . topic_id IN ($search_results) ... ">
<ownedRule xmi:type="uml:Constraint" xmi:id="52045" name="Select" constrainedElement="

ownedOp1252">
<specification xmi:type="uml:OpaqueExpression" xmi:id="Const52045"

name="t . topic_id IN ($search_results) and t .topic_poster ... " />
</ownedRule>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcID52045" name="342"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="PN52045" name="324"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcTS52045" name="1262771841"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcFromList52045"

name="phpbb_topics t, phpbb_forums f/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcRt52045"‘

name="t.*, f . forum_id, f .forum_name, ..."/>
</ownedOperation>

</operationTag>
</packagedElement>

</eventTag>
...

</fragment>
</fragment>

</BES>
</source>

(b) After blind renaming
<source file="SDModelsDec2T10BR/AnonWthAdmnLnks/AnonWithAdminLinks.sd" startline="13198" endline="13443"

pcid="73">
<BES start="BR" finish="BR">

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BR" covered="phpbb_forumsphpbb_posts..." start=
"BR" finish="BR">

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="BR" covered="BR" event="BR" message="BR">
...
<eventTag event="BR">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="BR" name="SendOperationEvent1252"
operation="BR">

<operationTag operation="BR">
<ownedOperation xmi:type="uml:Operation" xmi:id="BR" name="Select(search,t . topic_id IN ($

search_results) ...">
<ownedRule xmi:type="uml:Constraint" xmi:id="BR" name="Select" constrainedElement="BR">

<specification xmi:type="uml:OpaqueExpression" xmi:id="BR" name="t . topic_id IN ($
search_results) and t .topic_poster ..." />

</ownedRule>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="342"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="324"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="BR"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="phpbb_topics t, phpbb_forums f"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id= "BR" name="t.*, f.forum_id, f.forum_name, ..."/>

</ownedOperation>
</operationTag>

</packagedElement>
</eventTag>
...

</fragment>
</fragment>

</BES>
</source>

Fig. 15 Example blind renaming XMI attributes in a small section of a contextualized BES conversation. a Before blind renaming. b After blind
renaming

4.1.2 Initial results before normalization

In the first research question, we ask RQ1: Is our approach
capable of detecting patterns of similar conversations in
SDs? To address this, in the first part of our experiment we
workedwith reverse-engineered SDModels without any nor-
malization. This resulted in a large number of clones, due to

the artificial similarity of a large amount of redundant infor-
mation in the XMI representation, mainly in the coveredBy
attribute of <lifeline> elements and the connector attribute of
<message> elements. Without normalization to anonymize
the coveredBy attribute and eliminate the redundant elements
referred to by the connector and type attributes, the size of
contextualized conversational units is extremely large, and

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1301

the process is very expensive in terms of memory and CPU
time. But more importantly, these raw results yielded large
numbers of clones of little interest and very low accuracy, so
we do not show them here.

To avoid the problems with redundancy yielding artifi-
cially similar clones, we next experimented with removing
redundancy in the BES conversational units as described in
Sect. 3.3.1.

Table 1 shows the initial results using NICAD to find BES
conversation clones in our seven example models using a
difference threshold of 35%. The first column indicates the
different reverse-engineered SD models used in the experi-
ment. The second column indicates the size of the original
XMI representation of the SD model (before contextual-
ization) in number of XMI lines. The third column reports
the number of Behavioural Execution Specifications (BESs)
extracted as conversational units in each model. The fourth
column reports the number of conversational clone pairs
detected in the model. NICAD reports two potential clones
as a clone pair if the pair differs by at most the percentage of
lines specified in the difference threshold. For example, at a
difference threshold of 10%, if two conversational units of
100 lines each have at least 90 lines in common (i.e. differ by
at most 10 lines), then they will be reported as clones. The
fifth column reports the number of clone classes the clones
are grouped into, based on the similarity of the clones as
specified by the threshold value.

While we experimented with many difference thresholds,
using redundancy reduction alone we were only able to
expose any interesting similarities at higher thresholds and
hence the use of a 35% difference threshold.

Most of the clones generated using redundancy reduction
alone are meaningful. However, many of them are undesired
clone pairs. For instance, we noticed that some “Select”
operations of the web application were being paired with
“Update” operations in the conversation clones. For example,
in the ForcedAnonSD1 model, representing the Anonymous
User accessing administrator links, we noted that BES unit
with potential clone identifier (pcid) 136, containing theAcId
393, which is the “Select” operation gets paired with pcid
142, containing AcId 404 which is an “Update” operation
(Fig. 16). While this is expected at the larger threshold, it
is a false positive from the perspective of finding access
violations (Sect. 4). Thus, itwas deemednecessary to normal-
ize the contextualized representation of BES conversational
units before comparison, to allow us to use lower difference
thresholds and more precise matching of relevant elements.

4.1.3 Results after normalization

In the second research question, we ask RQ2: To what
extent does the normalization stage of our approach enhance
accuracy of the results? To answer this question, we com-

Fig. 16 An example of a false positive

pared the results of clone detection on the reverse-engineered
SD models with and without normalization. The steps of
our normalization are detailed in Sect. 3.3. In brief, nor-
malization involves eliminating irrelevant differences by
selectively “blind renaming” most attribute values, and by
filtering out irrelevant elements and repeated information.
For example, operation elements associated with xmi:type
=“uml:ReceiveOperationEvent” elements are redundant,
since the same operation element will be associated with
the corresponding xmi:type = “uml:SendOperationEvent”.
Renaming and filtering to remove redundancy and irrelevant
differences allow our potential clone comparisons to bemore
focussed and precise.

Table 2 shows the new BES conversation clone detection
results after normalization, using a difference threshold of
10%. We can also see that, without normalization, no clones
are reported at 10%, due to the irrelevant differences.

Compared to the results at 35% shown in Table 1, the
combination of normalization and the low difference thresh-
old of 10% eliminated false positive clone pairs such as those
shown in Fig. 16, and additionally removed the large number
of irrelevant very small clones reported at 35%. As expected
at a low difference threshold of 10%, many fewer near-miss
clone pairs are reported overall, reflecting a more precise
analysis.

Analysis of the results after normalization revealed that all
reported clone pairswere paired based on themain action per-
formed and with a similarity percentage of (96–100)%. The
action performed is represented as part of the operation ele-
ments in the contextualized representation. With these more
accurate results, we were ready to apply our clone detection
to finding access violations.

4.1.4 Performance analysis

We conducted our experiments on a 2.3 GHz Intel Core i7
MacintoshMiniwith 16Gb ofmemory runningOSX10.11.3
El Capitan. Our approach performed very well, analysing
largemodels of almost half amillion lines ofXMImodel code

123

www.manaraa.com

1302 M. H. Alalfi et al.

Table 1 Unnormalized clone detection results at a difference threshold of 35%

Model information Without normalization

Model name # Lines # BES # Clone pairs # Clone classes

AnonSD1 751 30 18 7

RegSD1 5375 223 1311 14

ForcedAnonSD1 9501 142 407 27

AdminSD 469356 513 9918 44

AnonSD2 53860 314 3330 27

RegSD2 455686 954 51334 42

ForcedAnonSD2 37915 1232 75947 51

Table 2 Clone detection results after normalization at a difference threshold of 10%

Model information Without normalization With normalization

Model name # Lines # BES # Cl. Pairs # Cl. Classes # Cl. Pairs # Cl. Classes

AnonSD1 751 30 0 0 14 8

RegSD1 5375 223 0 0 1116 14

ForcedAnon SD1 9501 142 0 0 298 19

AdminSD 469356 513 0 0 9584 27

AnonSD2 53860 314 0 0 3156 24

RegSD2 455686 954 0 0 39770 29

ForcedAnon SD2 37915 1232 0 0 60455 27

Table 3 Approach performance analysis (in CPU seconds)

Model information Performance analysis per stage Total time

Model name XMI lines Contex-tualize Extract Rename Clones 10% Clones 35% (-BR) All stages @ 10% All stages @ 35%

AnonSD1 751 0.1 0.0 0.1 0.1 0.1 0.4 0.4

RegSD1 5375 4.9 0.4 0.6 1.0 1.3 6.9 7.2

ForcedAnonSD1 9501 4.7 0.2 0.3 0.3 0.4 5.6 5.7

AdminSD 469356 2000.6 2.5 2.7 39.2 60.7 2045.0 2066.5

AnonSD2 53860 62.3 0.6 0.7 2.5 3.7 66.2 67.3

RegSD2 455686 1492.3 1.8 2.1 23.6 35.1 1519.8 1531.3

ForcedAnonSD2 37915 76.1 0.9 1.1 5.5 7.8 83.6 85.9

in about 34min. Table 3 provides detailed information about
performance analysis for each stage of our approach. The
actual clone analysis after the contextualization stage takes a
total of less than 1.1min for the largestmodel,which suggests
that more optimization for the contextualization stage will
help enhance performance of the approach.

4.2 Detecting access control vulnerabilities using
cross-clone detection

The third research question asks RQ3: Can the approach be
useful in real-world applications, and how does it perform
regarding precision and recall? To answer this question, in
the third part of our experiment, we applied our approach
to the problem of detecting suspicious conversations in SDs

recovered from a vulnerable web application. We compared
the results using our SD clone detection approach to uncover
potential security violations to the published results from a
state-of-the-art model-checking technique. In the following,
we detail the problem to be addressed, the application of SD
clone detection to it, and the results as compared to an exist-
ing heavyweight model-checking approach. In summary, our
lightweight clone detector-based approach achieved 100%
recall and 86% precision when compared to the model-
checking approach.

4.2.1 Motivation

Web applications are subject to many security risks. The
Open Web Application Security Project (OWASP) lists

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1303

access control, injection, authentication and session man-
agement attacks to be among the top 10 security risks [18].
Most web applications implement some sort of authentica-
tion or authorization mechanism to limit access to resources
or functions. Such limitations are normally specified using
access control policies set up by the administrator of the
web application. Authentication determines a user’s priv-
ileges by verifying that he/she is who he/she claims to
be. The most common method of authentication is pass-
word based, but device-based authentication (using physical
cards or keys) and biometrics-based authentication are also
possible.

Once a user is authenticated, access control policies deter-
mine which resources and functions of the application he/she
can use based on his/her role (e.g. administrator, registered
user, guest). However, there are cases where these security
mechanisms can fail. Many web applications implement the
access control by hiding links from the user, depending on
their privilege level [25]. This kind of vulnerability is also
known as forced browsing. This obscurity-based strategy is
highly vulnerable to security breaches, because attackersmay
be able to simply bypass the access control mechanisms by
guessing or inferring these hidden links and accessing them
directly to get to unauthorized pages.

Authorization by user role is known as role-based access
control (RBAC). The idea is that privileges are associated
with particular roles, such as administrator, registered user or
guest, and access to resources is governed by that role. When
a user logs in in a particular role, they inherit the privileges
associated with that role. An example of a web application
using RBAC is the popular open source internet bulletin
board system phpBB. Like most dynamic web applications,
phpBB interacts extensively with a database back-end. Both
user information and privileged, session-critical information
such as roles and access permissions is stored in the database.
Like many web applications, phpBB has three main user
roles, administrator, registered user, and guest, and access
to restricted pages is implemented in part by hiding links to
such pages from the user’s role. This property makes phpBB
vulnerable to many forms of security attacks.

In previous work by Alalfi et al., we have reverse-
engineered the execution traces of various user roles of
phpBB and other web applications into UML 2.1 Sequence
Diagrams in XMI representation using the PHP2XMI frame-
work [2], and then on to role-based SecureUML security
models by joining them with ER models of the application
database and structure [5]. The SecureUML security model
is then transformed into a Prolog model, which is used to
check that the model conforms to the specified access con-
trol security properties [4]. Using this process, we were able
to identify a list of unauthorized SQL access actions which
represent an anonymous user attempting to access the admin-
istrator’s privileged links.

In this work, we use the same set of recovered SD mod-
els and use lightweight SD cross-clone detection to see
whether we are able to identify the same list of access viola-
tions based on the action performed. Each model represents
the execution traces of a different user with the appropri-
ate control roles. In the cross-cloning experiment detailed
in the next section, we have used three design-recovered
sequence diagrammodels. Thefirstmodel (AnonUser) repre-
sents the execution traces of an anonymous user. The second
model (AdminUser) represents the execution sequences of an
administrator, and the third model (ForcedAnon) represents
the execution sequences of an anonymous user attempting
to follow the links that only administrators can access when
navigating the same phpBB bulletin board.

In the next few sections, we explain the application of the
NICAD cross-clone detector on the recovered SD models to
identify the various cases of access violation occurring in
the interaction sequences or conversations in the models. We
begin with basic clone detection in SD models.

In this first application of our SD conversational clone
detector, we aim at uncovering potential access control vul-
nerabilities in the recovered SD behavioural models of users
in different roles. Our approach uses cross-cloning (i.e. con-
versational clones between rather than within models) to
expose conversations that potentially violate access control
policies. In particular, by comparing the SD model of an
administrator to the SD model of an anonymous or regis-
tered user attempting to access the same links using forced
browsing, we hope to expose conversations involving access
to privileged information.

To implement cross-clone detection, we used the NICAD
cross-clone detector [10], which runs NICAD to identify
clones between rather than within systems. In our applica-
tion, the cross-clone detector takes as input two recovered
SD behavioural models in XMI form. Using the BES con-
versation extraction and normalization processes described
in Sect. 3, theBES conversations in eachmodel are identified,
extracted and normalized. The clone detection engine then
searches for only those clone pairs consisting of one BES
conversation from the first model, and one from the second.
The result is a list of all of the near-miss conversation clones
that the two models have in common.

Figure 17 shows how we use these cross-clone results
between models to expose potential access violations. Our
purpose is to check whether an anonymous user can access
any unauthorized content by explicitly attempting to access
links that only the administrator can access while navigating
the same forum (i.e. using “forced browsing”).

We first run the BES conversation cross-clone detector
between the AdminUser model (the recovered model of an
administrator interacting with the phpBB forum) and the
ForcedAnon model (the recovered model of an anonymous
user interacting with the phpBB forum, attempting to access

123

www.manaraa.com

1304 M. H. Alalfi et al.

Fig. 17 Exposing access vulnerabilities using cross-clone detection

all of the same urls as the administrator). The result of this
cross-clonedetectionyields a list of all of the cloned instances
of administrator conversations that are in common with the
anonymous user conversations using forced browsing, that
is, a list of everything that the administrator can do that the
anonymous user can also do by attempting to follow the same
links (Fig. 17, bottom left).

Next, we run a second cross-clone detection in which the
same AdminUser model is compared with the Anon model
(the recovered model of an anonymous user interacting with
the phpBB forum in its normal way, without forced brows-
ing). The result of this cross-clone detection is a list of all of
the cloned instances of administrator conversations that are
in common with a normal anonymous user conversations,
that is, a list of everything the administrator can do that the
normal, non-forcing anonymous user can also do (Fig. 17,
bottom middle).

We then take the difference in the sets of extracted clone
pairs from the two cross-clone detections based on the
NICAD potential clone identifiers (pcids) of the cloned con-
versations (Fig. 17, bottom right). NICAD identifies each
extracted potential clone (in our case each BES conversa-
tion) using a unique potential clone identifier, or pcid, which
allows us to easily compare the cross-clone results. The
resulting list of remaining clone pairs represents the set of
BES conversations that the ForcedAnon model has in com-
mon with the AdminUser model, which are not in common
with the normal Anon model. In other words, the actions that
the anonymous user was able to do while pretending to be
the administrator (using forced browsing) that he/she could
not do normally.

Naturally, this set of remaining clonepairs indicates poten-
tial access violations that the anonymous user was able to
force by trying administrator links. These clones are then
analysed to see what database actions (SQL statements) are
executed in these conversations and thus what privileged
information may have been exposed the anonymous user.

Figure 18 is a snapshot of an SD model cross-clone pair
reported by NICAD, showing the XMI source text of the
cloned conversations. Common conversations in bothmodels
(a clone pair) are enclosed within the < clone nlines=... sim-
ilarity=...> </clone > tags. Each clone in the pair is enclosed
within <source> </source > tags. The <source> </source >
tags specify the file location of the model along with the start
and end line numbers of where this clone instance is located
in the original model file, and the potential clone Id (pcid).

In order to do the cross-clone set differencing, we used
the NICAD-generated XML reports of clone pairs (without
the XMI source), as shown above. These reports provide
a list of all of the pcid pairs for the cross-clone pairs
detected between each of the (AdminUser×ForcedAnon)
and the (AdminUser×Anon) model comparisons. These
lists were imported into an Excel spreadsheet and sorted
to expose the Admin conversations that are present in the
(Admin×ForcedAnon) clone pairs but not present in the
(Admin× Anon) pairs. These suspicious ForcedAnon con-
versations were then reported as potential access violations.

4.2.2 Evaluation

In order to evaluate the accuracy of our lightweight security
analysis using SD cross-clone detection, we compared the

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1305

<clone nlines="231" similarity ="91">
<source file="CrssMdl10Spt28/AdmnSqAnonUsingUNF2/AdmnSq/Admin.sd" startline="203106" endline="203351"
pcid="1220">

<BES start="48550R" finish="EventOcc179839">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec179839" covered="

phpbb_forumsphpbb_postsphpbb_posts_textphpbb_topicsphpbb_users" start="48550R" finish="EventOcc179839">
...
<eventTag event="SendOp179839">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SendOp179839" name="
SendOperationEvent179839" operation="ownedOp179839">

<operationTag operation="ownedOp179839">
<ownedOperation xmi:type="uml:Operation" xmi:id="ownedOp179839" name="Select(posting,p . post_id = $

post_id and t . topic_id = p . topic_id and f . forum_id = p . forum_id and pt . post_id = p . post_id and
u . user_id = p . poster_id)" precondition="48550">

<ownedRule xmi:type="uml:Constraint" xmi:id="48550" name="Select" constrainedElement="
ownedOp179839">

...
</ownedRule>

<ownedParameter xmi:type="uml:Parameter" xmi:id="AcID48550" name="228"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="PN48550" name="225"/>
...

</operationTag>
</packagedElement>

</eventTag>
...

</fragment>
</BES>

</source>
<source file="CrssMdl10Spt28/AdmnSqAnonUsingUNF2/AnonUnF2/ForcedAnon.sd" startline="32572" endline="32817"
pcid="1692">

<BES start="52612R" finish="EventOcc9151">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec9151" covered="

phpbb_forumsphpbb_postsphpbb_posts_textphpbb_topicsphpbb_users" start="52612R" finish="EventOcc9151">
...
<eventTag event="SendOp9151">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SendOp9151" name="SendOperationEvent9151"
operation="ownedOp9151">

<operationTag operation="ownedOp9151">
<ownedOperation xmi:type="uml:Operation" xmi:id="ownedOp9151" name="Select(posting,p . post_id = $

post_id and t . topic_id = p . topic_id and f . forum_id = p . forum_id and pt . post_id = p . post_id and
u . user_id = p . poster_id)" precondition="52612">

<ownedRule xmi:type="uml:Constraint" xmi:id="52612" name="Select" constrainedElement="
ownedOp9151">

...
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcID52612" name="228"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="PN52612" name="225"/>
</ownedOperation>
...

</operationTag>
</packagedElement>
</eventTag>
...
</fragment>
</BES>
</source>
</clone>

Fig. 18 An SD model cross-clone pair reported by NICAD (in XMI form)

results to the previously published security analysis of the
same models using heavyweight SecureUML model check-
ing [4]. Each suspicious conversation clone was traced to
its associated actions in the original web application. Each
action represents an SQL database access and is identified in
the model by an action id (AcId). By comparing the action
ids of the suspicious conversation clones to those identified
as potential security violations in the published SecureUML
analysis, we are able to evaluate the accuracy of our cross-
clone based lightweight method.

Table 4 shows the results of the cross-cloning experi-
ment done using a difference threshold of 10%. For the
first cross-clone detection, comparing the Admin model to
the ForcedAnon model (Admin×ForcedAnon), the NICAD
cross-clone detector reports 1154 conversation clone pairs.
Based on the similarity of the clones, the reported cross-clone

pairs are grouped into 31 clone classes. Similarly, the cross-
clone detection comparing the Admin model to the Anon
model (Admin×Anon) reported 3030 clone pairs grouped
into 19 clone classes. Differencing the clone pairs reported
in (Admin×ForcedAnon) with those in (Admin× Anon)
yielded 62 suspicious conversations.

The 62 suspicious conversation clones were traced to their
ActIds in the original models, yielding a total of 14 action
ids, each corresponding to a unique SQL database access.

The original SecureUML model analysis reported by
Alalfi et al. [4] identified 12 actions as access violations in
the ForcedAnon model, all of which appeared in our list of
14. Of the 62 suspicious pairs identified by the approach in
this paper, 58 are instances of the 12 unauthorized database
accesses identified in the previously published security analy-
sis, and 4 are instances of 2 other database accesses which

123

www.manaraa.com

1306 M. H. Alalfi et al.

Table 4 Cross-clone detection results after normalization at a difference threshold of 10%

Models compared # Cross-clone pairs # Cross-clone classes Analysis time (s)

Admin×ForcedAnon 1154 31 62.1

Admin×Anon 3030 19 73.8

Set difference (Suspicious Conv.) 62

are benign (that is, they are false positives by comparison
with the previously published analysis).

Thus based on the standard definitions, our lightweight
security analysis using only SD clone detection on the recov-
ered SD models yielded a recall of 12/12 or 100% and a
precision of 12/14 or 86% by comparison with the previ-
ously published and validated SecureUML model-checking
analysis of Alalfi et al. [4]. This is a remarkable result: the
SecureUML analysis uses two more models and three more
steps to achieve essentially the same result that we obtain
using simple cross-clone detection and set differencing.

4.3 Threats to validity

There are several possible threats to the validity of our results.
The first is that we have used a set of recovered sequence dia-
gram models for our experimental validation. The extent to
which these models are representative will affect the applica-
bility of the results. The recovered sequence diagrams were
derived from execution of a single but production medium-
sized web application. They span a set of several dynamic
pages visited by users in three different roles and include
some very large models, making them good candidates for
the experiment. More sample models or recovered models
from other applications would generalize our results.

Second, our approach is widely tuneable, depending on
the purpose of the clone analysis. In this paper, we discussed
one example application on which this approach can pro-
vide accurate answers, with high precision and recall when
compared to an independent heavyweight approach to the
problem. While the case study used specific values for the
threshold, renaming, minimum and maximum number of
lines per conversation parameters, different values of these
parameters may bemore appropriate or provide better results
for other kinds of applications.

Third, there are very limited available resources when it
comes to finding model repositories for similar experiments.
The only tool for sequence diagrams that is comparable to
ours is Störrle’s match tool [30], which handles only models
built using magicDraw and expects them in the mdxml for-
mat. The match tool is also designed for target models built
using a forward engineering approach. When we tried apply-
ing the tool on one of our large models after transforming it
to the mdxml format, the match tool was unable to digest the

model. Thus for a lack of comparable tools to compare our
results to, we were forced to hand validate the correctness of
our results. However, our tool is based on the NiCad engine,
which has been validated against all existing tools designed
for software clone detection in a recent comprehensive exper-
iment, which found that NiCad outperformed all other clone
detection tools in both precision and recall [31].

In addition to hand validating our results, we evaluated the
precision and recall of our approach using a specific appli-
cation case study, detecting access control anti-patterns. In
that case study, the approach gave promising results. More
related experiments are needed to generalize our findings.

5 Related work

Liu et al. [15] have used suffix trees to identify clones in
sequence diagrams. Like us, they use BES interactions as
the basic elements of comparison; however, they encode
each sequence diagram into an array and then concatenate
all the arrays into a Long Array (LA). A suffix tree is then
constructed for this LA. Their algorithm looks for longest
common prefix in the suffix tree to check for duplicates and
also ensures that the duplications detected are extractable.
Duplicate fragments were refactored if they were considered
to be a bad smell.

Tree comparison has been used by Rattan et al. [19] for
finding duplicates in class diagrams from the XMI represen-
tation using the DOM’s API and XML parsing.

Rubin et al. [23,24] work with both structural and behav-
ioural models, specifically class and statechart diagrams.
They identify common, variable and optional parts of the
input model with the intent of refactoring input model into
product lines.

Störrle [28,29] talks about the challenges and possibili-
ties of clone detection in all types of UML domain models.
His work is based on an earlier work on model matching
and model querying [27]. He observes that UML models are
loosely connected graphs of heavy nodes, and implements
a graph matching algorithm in Prolog, representing models
as a set of facts, and using Prolog rules to find clones using
various similarity heuristics. The clone detection algorithm
and the evaluation of the heuristics are implemented as the
MQlone tool, a plugin in the MagicDraw UML CASE tool
that reports clones to the user.

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1307

Like us, Störrle handles near-miss (Type 3) clones, but
using metrics on the graph structure of the models rather
than our approximate string matching. The distinguishing
characteristic of our work is the identification and extraction
of separate “conversations”. While Störrle works on entire
models and derives his graphs from the UML/UMI repre-
sentation in the raw, we identify, normalize and separate
sequence diagram conversational units representing mean-
ingful and complete interactions.Hismethod is general rather
than tailored to sequence diagrams models and their mean-
ing.

Nejati et al. [17] use amatch function to compare the input
models using both static (structural and textual attributes
like element names) and behavioural (to identify element
with similar dynamic behaviours) properties of the models
to find correspondence between model elements in hierar-
chical Echarts (a statechart dialect). A merge operator is
used to then merge the elements that are similar. For sta-
tic matching, a combination of typographic, linguistic and
depth heuristics are considered to find the similarity values
between corresponding state names. For behavioural match-
ing, their algorithm iteratively computes the similarity degree
for every pair of states (s,t) of the input models by aggregat-
ing the similarity degrees between the immediate neighbours
of s and those of t. For this, their algorithm also compares
the transition labels between the states [17].

Overall similarity is obtained by taking the average of
both the static and behavioural similarity values. A threshold
value selected by the user is used to translate the similar-
ity value into a binary relation. All the state pairs whose
similarity value is greater than the threshold are included in
the binary relation, and others are left out. The state charts
are merged based on the binary relation value after a set
of sanity checks. According to the authors,“[their] match
and merge algorithms are scalable in terms of high com-
putational efficiency and space”. Tool support (TReMer+) is
also provided; however, there are still practical limitations
for visualizing larger models among others. Their approach
requires a domain expert to go over the correspondence rela-
tion for more correctness before the merging.

Al-Batran et al. [1] identify a number of semantics-
preserving transformations that allow for detection of seman-
tically equivalent Simulink clones. By performing these
transformations, model clone detection recall is increased:
semantically similar model clone instances are returned in
addition to the structurally similar clones detected by other
approaches. We may be able to incorporate their work into
our approach by representing these transformations as textual
source transformations and applying them to our normalized
NICAD SD model representations.

Of these techniques, only Liu et al. and Störrle handle
UML 2.0 sequence diagrams, and only Liu et al. also tar-
get conversations. Our work is based on identifying similar

patterns in sequences of message interactions using BES in
SDs.With contextualization and consolidation steps, theBES
units created are complete sequences of interactions and the
clones reported are thus extractable as entire conversations.
Our work also differs from others in its goal of characteriz-
ing and identifying patterns of potential security violations
in web applications.

None of the other methods have been tested on large mod-
els, and with the exception of Störrle, only exact (Type 1)
clones are handled. By contrast, our work uses a similar
approach to the one developed by Alalfi et al. [6] to detect
near-miss clones in Simulink models in order to find near-
miss (Type 3) clones in SDs. The additional distinction in
this work is that UML models in general, and behavioural
models specifically, require consolidation and contextualiza-
tion to localize the representation for comparison. No other
method enriches the precision of their similarity detection
using such localization.

The NICAD clone detector [10] has been successfully
used in finding clones in many source code languages. It
is a hybrid text-based clone detector which requires a speci-
fied granularity (a unit of comparison)which occurs naturally
in most source code languages. Examples of granularity in
source code languages include functions, blocks, statements
or even classes in object-oriented languages. For modelling
languages such as Simulink, a new tool called Simone [6]
has been based on NICAD to identify near-miss subsystem
clones in Simulink models. Simone adapts and specializes
NICAD to enable scalable and accurate clone detection in
large-scale Simulink models.

In previous work, we surveyed the entire area of code
clone detection [21]. NICAD was chosen as the code clone
technique to adapt as the basis of our approach because of
its parsing, normalizing, and text-comparing abilities and
because it was specifically designed to efficiently detect near-
miss clones, somethingwhich had not yet been accomplished
in the model clone detection domain.

We have also surveyed work on model comparison tech-
niques [26], which included ConQAT and ModelCD. The
majority of research in the area ofmodel comparison is based
on finding corresponding and differing model elements in
a set or sets of models and much of it is geared towards
model versioning. Model clone detection, especially near-
miss model clone detection, differs from this idea: model
clone detection attempts to find a group of similar or related
elements that have likely been reproduced from one another
rather than explicitly trying to identify what individual ele-
ments are the sameor are different. Thus,manyof approaches
in our survey are not applicable for model clone detection.
The only approaches that may be leveraged are those that use
similarity based metrics for comparison, such as EMFCom-
pare [8], which performs similarity comparison on structural
systemmodels.We leave clone detection in that area as future

123

www.manaraa.com

1308 M. H. Alalfi et al.

work, as we are currently interested in SD behavioural mod-
els only.

Gauthier et al. [13] use clone detection for identifying
clusters of security sensitive code in open source PHP web
applications. With the assumption that syntactically similar
clones should have similar access control privileges. They
hypothesize that clones that do not follow this assumption
violate security privileges and report them as “security dis-
cordant” clones. In our case, we use cross-clone detection to
identify patterns of conversations in the administrator model
that contain actions (SQL accesses) at the administrator level
in anonymous usermodels given access to administrator links
with forced browsing.

6 Conclusions and future work

In this paper, we have presented a practical approach to
identifying near-miss cloned conversations in behavioural
models, using consolidation and contextualization of the
XMI interchange representation of UML sequence diagram
models to identify and compare interaction sequences for
clones.

In our experiments, our approach has efficiently detected
Type 3 (exact near-miss) conversation clones in seven
sequence diagrams of various sizes reverse-engineered from
monitored interactions of web applications. Depending on
the analysis, a set of normalizations may need to be applied
to further refine the results to only include the most signifi-
cant clones.

We have applied our approach on the problem of identify-
ing access control security vulnerability patterns in recovered
models of interaction with web applications. Our approach
shows promising results with high precision and recall com-
pared to a state-of-the-artmodel-checking-basedmethod.All
results were obtained in less than 1.1min for sequence dia-
grams of up to half a million XMI lines with between 30 to
1232 conversations, exclusive of the time required for pre-
processing (contextualization), which required a maximum
of about 33.3min for the largest model. We are presently
working on enhancing the contextualization stage to further
improve the total performance.

Currently, the results we obtain from the clone detector are
presented in NICAD’s default XML andHTML text formats.
We plan to trace the clones back to the original diagrams and
visualize them in the model. We believe that our approach
can relatively easily be extended to other kinds of UML and
behavioural model representations.

We are interested in testing our approach on behavioural
models other than SD, such as statecharts, and to experi-
menting with a large variety of models of various types,
including those with more advanced features such as loops
and components. It will be interesting to test our approach

on behavioural models designed using forward engineering,
with the aim of refactoring to improve design and mainte-
nance properties of the models.

Acknowledgements This work is supported in part by the Natural
Sciences andEngineeringResearchCouncil ofCanada (NSERC) as part
of the NECSIS Automotive Partnership, and by the Ontario Research
Fund through a Research Excellence grant.

References

1. Al-Batran, B., Schätz, B., Hummel, B.: Semantic clone detection
formodel-based development of embedded systems.Model Driven
Eng. Lang. Syst. 6981, 258–272 (2011)

2. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automated reverse engineer-
ing of UML sequence diagrams for dynamic web applications. In:
1st International Workshop on Web Testing, WebTest 2009, pp.
287–294 (2009)

3. Alalfi,M.H., Cordy, J.R., Dean, T.R.:WAFA: fine-grained dynamic
analysis of web applications. In: 11th International Symposium on
Web Systems Evolution, WSE 2009, pp. 41–50 (2009)

4. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automated verification of
role-based access control security models recovered from dynamic
web applications. In: 14th International Symposium on Web Sys-
tems Evolution, WSE 2012, pp. 1–10 (2012)

5. Alalfi,M.H., Cordy, J.R., Dean, T.R.: Recovering role-based access
control security models from dynamic web applications. In: 12th
International Conference on Web Engineering, ICWE 2012, pp.
121–136 (2012)

6. Alalfi, M.H., Cordy, J.R., Dean, T.R., Stephan, M., Stevenson,
A.: Models are code too: near-miss clone detection for Simulink
models. In: 28th IEEE International Conference on SoftwareMain-
tenance, ICSM 2012, pp. 295–304 (2012)

7. Antony, E.P., Alalfi, M.H., Cordy, J.R.: An approach to clone
detection in behavioural models. In: 20th Working Conference on
Reverse Engineering, WCRE 2013, Koblenz, Germany, October
14–17, 2013, pp. 472–476 (2013)

8. Brun, C., Pierantonio, A.: Model differences in the Eclipse mod-
elling framework. The European Journal for the Informatics
Professional, pp. 29–34 (2008)

9. Cordy, J.R.: The TXL source transformation language. Sci. Com-
put. Program. 61(3), 190–210 (2006)

10. Cordy, J.R., Roy, C.K.: The NICAD clone detector. In: 19th IEEE
International Conference on ProgramComprehension, ICPC 2011,
pp 219–220 (2011)

11. Dean, T.R., Cordy, J.R., Malton, A.J., Schneider, K.A.: Agile pars-
ing in TXL. Autom. Softw. Eng. 10(4), 311–336 (2003)

12. Farhadi,M.R., Fung,B.C.M.,Charland, P.,Debbabi,M.:BinClone:
detecting code clones in malware. In: 8th International Conference
onSoftware Security andReliability, SERE2014, pp. 78–87 (2014)

13. Gauthier, F., Lavoie, T., Merlo, E.: Uncovering access control
weaknesses and flaws with security-discordant software clones. In:
29thAnnual Computer SecurityApplications Conference, ACSAC
2013, pp. 209–218 (2013)

14. Karademir, S., Dean, T., Leblanc, S.: Using clone detection to find
malware in Acrobat files. In: 23rd Conference of the Center for
Advanced Studies on Collaborative Research, CASCON 2013, pp.
70–80 (2013)

15. Liu, H., Ma, Z., Zhang, L., Shao, W.: Detecting duplications in
sequence diagrams based on suffix trees. In: 13thAsia-Pacific Soft-
ware Engineering Conference, APSEC 2006, pp. 269–276 (2006)

16. Martin, D., Cordy, J.R.: Towardsweb services tagging by similarity
detection. In: The Smart Internet, pp. 216–233 (2010)

123

www.manaraa.com

An approach to clone detection in sequence diagrams and its application to security analysis 1309

17. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave,
P.: Matching and merging of statecharts specifications. Int. Conf.
Softw. Eng. ICSE 2007, 54–64 (2007)

18. OWASP. Forced browsing. https://www.owasp.org/index.php/
Forced_browsing. Accessed Nov 2013

19. Rattan, D., Bhatia, R., Singh, M.: Model clone detection based
on tree comparison. IEEE India Conference, INDICON 2012, pp.
1041–1046 (2012)

20. Roy, C.K., Cordy, J.R.: NICAD: accurate detection of near-
miss intentional clones using flexible pretty-printing and code
normalization. In: 16th International Conference on ProgramCom-
prehension, pp. 172–181 (2008)

21. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of
code clone detection techniques and tools: a qualitative approach.
Sci. Comput. Program. 74(7), 470–495 (2009)

22. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of
code clone detection techniques and tools: a qualitative approach.
Sci. Comput. Program. 74(7), 470–495 (2009)

23. Rubin, J., Chechik, M.: From products to product lines using
modelmatching and refactoring. In: 2nd InternationalWorkshopon
Model-Driven Software Product Line Engineering, MAPLE 2010,
pp. 155–162 (2010)

24. Rubin, J., Chechik, M.: Combining related products into prod-
uct lines. In: 15th International Conference on Fundamental
Approaches to Software Engineering, FASE 2012, pp. 285–300
(2012)

25. Shapland, R.: Forced browsing: understanding and halting sim-
ple browser attacks. http://www.computerweekly.com/answer/
Forced-browsing-Understanding-and-halting-simple-browser-att
acks. Accessed Dec 2013

26. Stephan, M., Cordy, J.R.: A survey of methods and applications of
model comparison. Technical Report 2011-582 Review 2, Queen’s
University (2011)

27. Störrle, H.: VMQL: a generic visual model query language. IEEE
Symp. Vis. Lang. Hum. Cent. Comput. VL/HCC 2009, 199–206
(2009)

28. Störrle, H.: Towards clone detection in UML domain models. In:
VIII Nordic Workshop on Model-Driven Software Engineering,
ECSA 2010 workshops, pp. 285–293 (2010)

29. Störrle, H.: Towards clone detection in UML domain models.
Softw. Syst. Model. 12(2), 307–329 (2013)

30. Störrle, H.: MACH 5 hypersonic. http://www2.compute.dtu.dk/
~rvac/hypersonic/. Accessed Feb 2015

31. Svajlenko, J., Roy, C.K.: Evaluating clone detection tools with big-
clonebench. In: 2015 IEEE International Conference on Software
Maintenance andEvolution, ICSME2015,Bremen,Germany, Sep-
tember 29–October 1, 2015, pp. 131–140 (2015)

32. WatirCraft. Watir. http://watir.com. Accessed Nov 2014

Manar H. Alalfi is an Assis-
tant professor in Software Engi-
neering at Alfaisal’s COE and
an Adjunct Assistant Professor
at Queen’s School of Comput-
ing. She received her Ph.D. from
Queen’s in 2010. Dr. Alalfi is
specialized in software engineer-
ing and its synergy with diverse
research areas including: Model-
DrivenEngineering (MDE),Web
applications Security Analysis,
MDE for Automotive Systems,
Scientific Software Engineering,
and Mining Software Reposito-

ries. She has published her research results in highly reputed interna-
tional journals and conferences and served as a reviewer for multiple
premier conferences and journals in software engineering. Dr. Alalfi has
7-year teaching experience at the undergraduate and graduate levels and
taught several courses at the Alfaisal University, Hashemite University,
KAUST, and Queen’s University. She has more than 10-year research
and Software development experience in leading roles at Queen’s Uni-
versity, KAUST and the University of Alberta. Prior to joining AU, she
was a senior research scientist for The Network on Engineering Com-
plex Software- Intensive Systems for Automotive Systems (NECSIS), a
$16.6 million Canadian research network. The project is partnered with
General Motors, IBM, Malina Software and led by eight world-leading
software engineering research institution in North America. Dr. Alalfi
is a professional member at ACM and IEEE Computer Society.

Elizabeth P. Antony completed
her Bachelor’s degree in Com-
puter Engineering from Fr.
C.R.I.T (University of Mumbai).
She received her Master of Sci-
ence degree in Computer Infor-
mation Systems from University
of Wisconsin, USA. She was a
research student under the super-
vision of Dr. James R. Cordy
and Dr. Manar H. Alalfi and
received her Master’s in Com-
puting from Queen’s University,
Canada. Currently she is work-
ing with Bombardier as Product

Introduction Analyst in Kingston, ON.

James R. Cordy is Professor
and past Director of the School
of Computing at Queen’s Uni-
versity in Kingston, Ontario,
Canada, and current Director of
the NSERC CREATE Graduate
Specialization in Ultra-Large-
Scale Software Systems. From
1995 to 2000, he was Vice Pres-
ident and Chief Research Sci-
entist at Legasys Corporation,
a software technology company
specializing in legacy software
system analysis and renovation.
As leader of the TXL source

transformation project with hundreds of academic and industrial users
worldwide, he is the author of more than 200 refereed contributions
in programming languages, software engineering and artificial intelli-
gence. Dr. Cordy is an ACM Distinguished Scientist, a senior member
of the IEEE, and an IBM CAS faculty fellow.

123

https://www.owasp.org/index.php/Forced_browsing
https://www.owasp.org/index.php/Forced_browsing
http://www.computerweekly.com/answer/Forced-browsing-Understanding-and-halting-simple-browser-attacks
http://www.computerweekly.com/answer/Forced-browsing-Understanding-and-halting-simple-browser-attacks
http://www.computerweekly.com/answer/Forced-browsing-Understanding-and-halting-simple-browser-attacks
http://www2.compute.dtu.dk/~rvac/hypersonic/
http://www2.compute.dtu.dk/~rvac/hypersonic/
http://watir.com

www.manaraa.com

Software & Systems Modeling is a copyright of Springer, 2018. All Rights Reserved.

	An approach to clone detection in sequence diagrams and its application to security analysis
	Abstract
	1 Introduction
	2 Background
	2.1 Clones in sequence diagrams

	3 Approach to clone detection
	3.1 Identification and consolidation
	3.1.1 Identification: defining a level of granularity
	3.1.2 Consolidation: creating a conversational unit
	3.1.3 Contextualization: making units whole

	3.2 Extraction and clone comparison
	3.2.1 Extraction
	3.2.2 Clone comparison

	3.3 Normalization
	3.3.1 Reducing redundancy
	3.3.2 Blind renaming

	4 A case study in SD clone detection
	4.1 Clone detection in SD models
	4.1.1 Design-recovered SD models
	4.1.2 Initial results before normalization
	4.1.3 Results after normalization
	4.1.4 Performance analysis

	4.2 Detecting access control vulnerabilities using cross-clone detection
	4.2.1 Motivation
	4.2.2 Evaluation

	4.3 Threats to validity

	5 Related work
	6 Conclusions and future work
	Acknowledgements
	References

